
CS 280 Algorithmic Game Theory

Ioannis Panageas

L07a Complexity Classes and AGT

Standard Complexity Classes

Intro to AGT

• P: Set of decision problems for which some
algorithm can provide an answer in
polynomial time.

Standard Complexity Classes

Intro to AGT

• P: Set of decision problems for which some
algorithm can provide an answer in
polynomial time.

• NP: Set of all decision problems for which
for the instances where the answer is
"yes“, we can verify in polynomial time that
the answer is indeed yes.

• co-NP: Same as above with yes->no.

Problems in P

• Problems that can be solved in polynomial time.

– Decision version of shortest path (is the shortest path
at most 𝐿 (yes/no)?)

– Decision version of finding the maximum number of a
list (is the maximum at most 𝑀 (yes/no)?)

– Is 𝑛 a prime number (yes/no)?

Intro to AGT

Problems in NP

• Problems that “yes” instance can be verified in
polynomial time.

• e.g., The travelling salesman problem (TSP)

– Given a complete weighted graph, find the shortest
route that visits each vertex once and returns to
origin (decision version).

Intro to AGT

Equilibrium Computation

• The goal is to find a function that maps games
to (mixed strategy) Nash equilibria.

• This is NOT a decision problem (yes/no).

Intro to AGT

Equilibrium Computation

• The goal is to find a function that maps games
to (mixed strategy) Nash equilibria.

• This is NOT a decision problem (yes/no).

• Examples:

• Add two numbers and find the outcome

• Is the sum of two numbers odd?

Intro to AGT

Function Complexity Classes

• FP: The set of function problems for which
some algorithm can provide an
output/answer in polynomial time.

• FNP: set of all function problems for which
the validity of an (input, output) pair can be
verified in polynomial time (by some
algorithm).

Intro to AGT

Function Complexity Classes
• FP: The set of function problems for which

some algorithm can provide an
output/answer in polynomial time.

• FNP: set of all function problems for which
the validity of an (input, output) pair can be
verified in polynomial time (by some
algorithm).

• TFNP: Subclass of FNP for which existence of
solution is guaranteed for every input!

Intro to AGT

Non-constructive arguments

• Local Search: Every directed acyclic graph must
have a sink.

Intro to AGT

Non-constructive arguments

• Local Search: Every directed acyclic graph must
have a sink.

• Pigeonhole Principle: If a function maps n
elements to n-1 elements, then there is a
collision.

Intro to AGT

Non-constructive arguments

• Local Search: Every directed acyclic graph must
have a sink.

• Pigeonhole Principle: If a function maps n
elements to n-1 elements, then there is a
collision.

• Handshaking lemma: If a graph has a node of
odd degree, then it must have another.

Intro to AGT

Non-constructive arguments

• Local Search: Every directed acyclic graph must
have a sink.

• Pigeonhole Principle: If a function maps n
elements to n-1 elements, then there is a
collision.

• Handshaking lemma: If a graph has a node of
odd degree, then it must have another.

• End of line: If a directed path has an unbalanced
node, then it must have another.

Intro to AGT

From non-constructive arguments
to complexity classes in TFNP

• PLS: All problems in TFNP whose existence proof
is implied by Local Search arg.

• PPP: All problems in TFNP whose existence proof
is implied by the Pigeonhole Principle.

• PPA: All problems in TFNP whose existence proof
is implied by the Handshaking lemma.

• PPAD: All problems in TFNP whose existence
proof is implied by the End-of-line argument.

Intro to AGT

Proving a negative result

Question: How to prove there is no polynomial
time algorithm for a problem?

– i.e., show that there is no algorithm of time

Answer: We don’t know how to do it. Instead,

we do reductions!

Intro to AGT

The hardest problems in class C

• A problem Q is C-hard if

– all problems in C can be reduced to it: for all P in C, P ≤P Q

– Q can be turned into any other C problem, in poly time

– Q is at least as hard as any C problem

• A problem Q is C-complete if it is in class C and C-hard

– Q Is the hardest problem in C.

– Q is in C, and for all P in C, P ≤P Q

Intro to AGT

The hardest problems in class C

• A problem Q is C-hard if
– all problems in C can be reduced to it: for all P in C, P ≤P Q
– Q can be turned into any other C problem, in poly time
– Q is at least as hard as any C problem

• A problem Q is C-complete if it is in class C and C-hard
– Q Is the hardest problem in C.
– Q is in C, and for all P in C, P ≤P Q

• SAT is an NP-complete problem! (Cook, 71’).
• Find a Nash eq. is PPAD-complete! (Daskalakis et al 06’)
• Find a pure Nash eq. in congestion games is PLS-complete!

(Fabrikant et al 04).

Intro to AGT

AGT and complexity classes

PPA

FNP

PPAD

PPP

PLS

FP

Intro to AGT

	Slide 1: L07a Complexity Classes and AGT
	Slide 2: Standard Complexity Classes
	Slide 3: Standard Complexity Classes
	Slide 4: Problems in P
	Slide 5: Problems in NP
	Slide 6: Equilibrium Computation
	Slide 7: Equilibrium Computation
	Slide 8: Function Complexity Classes
	Slide 9: Function Complexity Classes
	Slide 10: Non-constructive arguments
	Slide 11: Non-constructive arguments
	Slide 12: Non-constructive arguments
	Slide 13: Non-constructive arguments
	Slide 14: From non-constructive arguments to complexity classes in TFNP
	Slide 15: Proving a negative result
	Slide 16: The hardest problems in class C
	Slide 17: The hardest problems in class C
	Slide 18: AGT and complexity classes

